Abstract

The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has approximately 10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.