Abstract

The origin of the Jupiter Trojan asteroids has long been a mystery. Dynamically, the population, which is considerably smaller than the main asteroid belt, librates around Jupiter’s stable L4 and L5 Lagrange points, 60 deg ahead and behind Jupiter. It is thought that these bodies were captured into these orbits early in solar system history, but any capture mechanism must also explain why the Trojans have an excited inclination distribution, with some objects reaching inclinations of 35°. The Trojans themselves, individually and in aggregate, also have spectral and physical properties that appear consistent with many small bodies found in the outer solar system (e.g., irregular satellites, Kuiper belt objects). In this review, we assemble what is known about the Trojans and discuss various models for their origin and collisional evolution. It can be argued that the Trojans are unlikely to be captured planetesimals from the giant planet zone, but instead were once denizens of the primordial Kuiper belt, trapped by the events taking place during a giant planet instability. The Lucy mission to the Trojans is therefore well positioned to not only answer questions about these objects, but also about their place in planet formation and solar system evolution studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call