Abstract

The presence of unintentional background impurities found in LPE-grown Hg 1- x Cd x Te layers has been traced back to the starting materials and different technological steps in the course of preparation of the layers. The purified elements Cd and Te, the binary compounds HgTe and CdTe synthesized from them, VB-grown CdTe monocrystals, LPE source solutions and the final LPE (Hg 0.78Cd 0.22Te/CdTe) layer/substrate structures have been analysed with regard to their impurity content. Spark source mass spectrometry, atomic absorption spectrophotometry and secondary ion mass spectrometry were the analytical techniques employed. Generally, any high-temperature and handling procedures cause an increase in the concentration of most of the impurities. For CdTe Bridgman ingots, a non-uniform distribution with enrichment in the last-to-freeze part of the as-grown crystal is observed. Furthermore, it was found that the carrier concentration and conductivity type of annealed LPE layers are influenced by the varying impurity levels of substrates from different axial positions within the CdTe ingot. The impurity depth profiles of LPE layers show a gettering effect of the layer surface and the layer/substrate interface resulting in a reduced impurity level in the central part of the layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call