Abstract

The 2–3 nm size-selected glutathione-capped Ag–In–S (AIS) and core/shell AIS/ZnS quantum dots (QDs) were produced by precipitation/redissolution from an aqueous colloidal ensemble. The QDs reveal broadband photoluminescence (PL) with a quantum yield of up to 60% for the most populated fraction of the core/shell AIS/ZnS QDs. The PL band shape can be described by a self-trapped exciton model implying the PL band being a sequence of phonon replica of a zero-phonon line resulting from strong electron–phonon interaction and a partial conversion of the electron excitation energy into lattice vibrations. It can be concluded that the position and shape of the PL bands of AIS QDs originate not from energy factors (depth and distribution of trap states) but rather from the dynamics of the electron–phonon interaction and the vibrational relaxation in the QDs. The rate of vibrational relaxation of the electron excitation energy in AIS QDs is found to be size-dependent, increasing almost twice from the largest to the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.