Abstract

AbstractCross-isobath transport of Upper Circumpolar Deep Water (UCDW) provides a major source of heat to the Antarctic continental shelves. Adaptive sampling with a Slocum glider revealed that the UCDW regularly intrudes onto the western Antarctic Peninsula shelf within mesoscale eddies, and a linear stability analysis of the shelf-break current upstream confirmed eddy length scales and vertical structure are consistent with the baroclinic instability of the current. The properties of the most unstable mode are insensitive to current orientation but sensitive to bottom slope in accordance with modified Eady theory. Once on the shelf, the eddies’ core properties mix with ambient shelf water to form modified CDW (mCDW). Concurrent shipboard CTD and ADCP data are used to diagnose the responsible mixing processes and highlight the importance of thermohaline intrusions. The genesis mechanism of the interleaving layers cannot be confirmed, however a simple analytic model suggests the upper limit contribution of advection by internal waves cannot account for the observed temperature variance unless the cross-eddy temperature gradient is large. Data-adaptive sampling of an eddy with the glider revealed it lost heat across two isopycnals and a fixed radius at a rate of 7 × 109 J s−1 over 3.9 days. This rate is corroborated by a diffusion model initialized with the eddy’s initial hydrographic properties and informed by the heat fluxes parameterized from the shipboard data. The results suggest eddies predominately lose heat laterally and downward, which preserves subsurface heat for melting of marine-terminating glaciers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call