Abstract
One of the critical times for the survival of animals is twilight where the most abundant visible lights are between 400 and 550 nanometres (nm). Green‐sensitive RH2 pigments help nonmammalian vertebrate species to better discriminate wavelengths in this blue‐green region. Here, evaluation of the wavelengths of maximal absorption (λmaxs) of genetically engineered RH2 pigments representing 13 critical stages of vertebrate evolution revealed that the RH2 pigment of the most recent common ancestor of vertebrates had a λmax of 503 nm, while the 12 ancestral pigments exhibited an expanded range in λmaxs between 474 and 524 nm, and present‐day RH2 pigments have further expanded the range to ~ 450–530 nm. During vertebrate evolution, eight out of the 16 significant λmax shifts (or |Δλmax| ≥ 10 nm) of RH2 pigments identified were fully explained by the repeated mutations E122Q (twice), Q122E (thrice) and M207L (twice), and A292S (once). Our data indicated that the highly variable λmaxs of teleost RH2 pigments arose from gene duplications followed by accelerated amino acid substitution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.