Abstract

Two green inhibitors extracted from an endemic species (Origanum grosii (Og)) using two solvents of different polarity (water and ethanol), OgW (aqueous extract) and OgE (ethanolic extract), were used for the anticorrosion of mild steel (M steel) in a 1 M HCl medium. Anticorrosive performance of OgW and OgE was assessed using standard electrochemical techniques, EIS/PDP measurements, weight loss method and SEM/EDX surface analysis. The results show that OgW achieves a maximum inhibition efficiency of 92 % and that the extract in aqueous medium (more polar) is more efficient than the extract in ethanolic medium (less polar). Both extracts act as mixed inhibitors and their corrosion process is predominantly governed by a charge transfer. Concentration and temperature effect was studied and shown that they are two antagonistic parameters for the evolution of inhibitory effectiveness of both OgW and OgE. The adsorption isotherms of the two inhibitors OgE and OgW obey to the Langmuir adsorption model. Moreover, the examination of SEM images and EDX spectra support a deposit of both extracts on the metal surface by an adsorption phenomenon. Besides, theoretical approach of the molecular structures of the major compounds M-OgW and M-OgE and inhibition efficiency was examined via DFT calculations and molecular dynamics simulations and it was consistent with the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call