Abstract

Inspired by the constitution of things in the natural world, three-dimensional (3D) nanofiber scaffold/cells complex was constructed via the combination of electrospinning technology and origami techniques. The nanofiber boxes prepared by origami provided a limited space for the layer-by-layer nanofiber films, and the human fetal osteoblasts (hFOBs) seeded on the both sides of the nanofiber films were expected to facilitate the bonding of the adjacent nanofiber films through the secretion of extracellular matrix. Specifically, the hFOBs presented 3D distribution in the nanofiber scaffold, and they can stretch across the gaps between the adjacent nanofiber films, forming the cell layers and filling the whole 3D nanofiber scaffold. Eventually, a 3D block composed of electrospun nanofiber scaffold and cells was obtained, which possesses potential applications in bone tissue engineering. Interestingly, we also created 3D nanofiber structures that range from simple forms to intricate architectures via origami, indicating that the combination of electrospinning technology and origami techniques is a feasible method for the 3D construction of tissue engineering scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.