Abstract

This paper presents two new types of origami-inspired mechanical metamaterials based on the Miura-derivative fold patterns that consist of non-identical parallelogram facets. The analytical models to predict dimension changes and deformation kinematics of the proposed metamaterials are developed. Furthermore, by modelling the creases as revolute hinges with certain rotational spring constants, we derived analytical models for stretching and bulk moduli. The analytical models are validated through finite-element simulation results. Numerical examples reveal that the proposed metamaterials possess some intriguing properties, including negative Poisson's ratios and bulk modulus. The work presented in this paper can provide a highly flexible framework for the design of versatile tunable mechanical metamaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.