Abstract

Origami is increasingly used as a source of inspiration in a wide variety of disciplines. In this project, we explore cylindrical origami structures, referred to as “origami bellows”, as novel geometries for orbital space habitats. The dimensions of space habitats are limited by the tight mass and volume constraints imposed by launcher payload fairings. Future deployable habitats based on foldable origami bellows have the potential to achieve large volumes when deployed, while being capable of compacting to smaller stowed configurations for launch. To assess the feasibility of such habitat designs, the deployment performance of a selection of bellows was investigated. Bellows formed from Kresling and Miura-ori patterns were considered; both expand axially, but Miura-ori patterns experience an additional radial expansion. Our scope was also limited to patterns which are stable in both the stowed and deployed configurations. Habitats were judged on their internal and effective volume expansions; the latter being adjusted to account for the practicalities of operating within a complex habitat geometry. We find that significant internal and effective volume expansions are achievable, particularly for Miura-ori geometries. Nonetheless, we make the argument for Kresling patterns as a more practical option due to their simpler geometries, despite smaller volume expansions. We find our Kresling geometries to have effective volumes between 2.5 - 3.6 times greater than a conventional habitat launched in a fairing of equal volume. Our work shows that origami-based designs do indeed have potential to greatly outperform current space habitat designs. Keywords: Origami Bellows, Space Habitats, Deployable Structures

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.