Abstract

The stomach is a vital organ in the human digestive system, and its digestive condition is critical to human health. The physical movement of the stomach during digestion is controlled by the circular and oblique muscles. Existing stomach simulators are unable to realistically reproduce the physical movement of the stomach. Due to the complexity of gastric motility, it is challenging to simulate and sense gastric motility. This study proposes for the first time a bionic soft robotic stomach (BSRS) with an integrated drive and sensing structure inspired by origami and self-powered sensing technology. This soft stomach (SS) can realistically simulate and sense the movements of various parts of the human stomach in real-time. The contraction force and contraction rate of the BSRS are investigated with different viscosity contents, and the experimental values are similar to the physiological range (maximum contraction force is 3.2 N, and maximum contraction rate is 0.8). This paper provides an experimental basis for the study of gastric digestive medicine and food science by simulating the peristaltic motion of the BSRS according to the human stomach and by combining the triboelectric nanogenerator (TENG) sensing technology to monitor the motion of the BSRS in real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.