Abstract
Origami, the ancient art of folding thin sheets, has attracted increasing attention for its practical value in diverse fields: architectural design, therapeutics, deployable space structures, medical stent design, antenna design and robotics. In this survey article, we highlight its suggestive value for the design of materials. At continuum level, the rules for constructing origami have direct analogues in the analysis of the microstructure of materials. At atomistic level, the structure of crystals, nanostructures, viruses and quasi-crystals all link to simplified methods of constructing origami. Underlying these linkages are basic physical scaling laws, the role of isometries, and the simplifying role of group theory. Non-discrete isometry groups suggest an unexpected framework for the design of novel materials.This article is part of the theme issue ‘Topics in mathematical design of complex materials’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.