Abstract

Inference about the causal structure that induces correlations between two traits can be achieved by combining genetic associations with a mediation-based approach, as is done in the causal inference test (CIT). However, we show that measurement error in the phenotypes can lead to the CIT inferring the wrong causal direction, and that increasing sample sizes has the adverse effect of increasing confidence in the wrong answer. This problem is likely to be general to other mediation-based approaches. Here we introduce an extension to Mendelian randomisation, a method that uses genetic associations in an instrumentation framework, that enables inference of the causal direction between traits, with some advantages. First, it can be performed using only summary level data from genome-wide association studies; second, it is less susceptible to bias in the presence of measurement error or unmeasured confounding. We apply the method to infer the causal direction between DNA methylation and gene expression levels. Our results demonstrate that, in general, DNA methylation is more likely to be the causal factor, but this result is highly susceptible to bias induced by systematic differences in measurement error between the platforms, and by horizontal pleiotropy. We emphasise that, where possible, implementing MR and appropriate sensitivity analyses alongside other approaches such as CIT is important to triangulate reliable conclusions about causality.

Highlights

  • Observational measures of the human phenome are growing ever more abundant, but using these data to make causal inference is notoriously susceptible to many pitfalls, with basic regression-based techniques unable to distinguish a true causal association from reverse causation or confounding [1,2,3]

  • We discuss scenarios where the nature of the genetic association with the causal trait can lead existing causal inference methods to give the wrong direction of causality

  • We introduce a new method that can be applied to summary level data and is potentially less susceptible to problems such as measurement error, and apply it to evaluate the causal relationships between DNA methylation levels and gene expression

Read more

Summary

Introduction

Observational measures of the human phenome are growing ever more abundant, but using these data to make causal inference is notoriously susceptible to many pitfalls, with basic regression-based techniques unable to distinguish a true causal association from reverse causation or confounding [1,2,3]. The use of genetic associations to instrument traits has emerged as a technique for improving the reliability of causal inference in observational data, and with the coincident rise in genome-wide association studies it is a prominent tool that is applied in several different guises [3,4,5,6]. This study focuses on non-differential measurement error where all strata of a measured variable have the same error rate, which can manifest as changes in scale or measurement imprecision (noise). Such variability can arise through a whole plethora of mechanisms, which are often specific to the study design and difficult to avoid [7, 8]. If the measurement of biological interest is the methylation level in a T cell, measurement error of this value can be introduced by using methylation levels from whole blood samples because the measured value will be an assay of many cell types [11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.