Abstract

Rational design and engineering of high-performance molecular sieve membranes towards C2 H4 /C2 H6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH2 -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH2 -MIL-125 framework enabled high-affinity π-complexation interactions with C2 H4 , resulting in an C2 H4 /C2 H6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH2 -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO2 and Cu(I) sites, our membrane displayed superior CO2 /N2 selectivity of 43.2 with CO2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call