Abstract
The four colour conjecture is well known to be equivalent to the proposition that every trivalent planar graph without an isthmus (i.e. an edge whose removal disconnects the graph) has an edge colouring in three colours ([1], p. 121). By an edge colouring we mean an assignment of colours to the edges of the graph so that no two edges of the same colour meet at a common vertex, and the graph is n-valent if n edges meet at each vertex. An edge colouring by three colours is called a Tait colouring; a trivalent graph which has a Tait colouring can be split in three edge-disjoint 1-factors, i.e. spanning monovalent subgraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.