Abstract

Oriented single crystalline titanium dioxide (TiO 2) nano-pillar arrays were directly synthesized on the Ti plate in tetramethylammonium hydroxide (TMAOH) solution by one-pot hydrothermal method. The samples were characterized respectively by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Results showed that the TiO 2 nano-pillar with a tetrahydral bipyramidal tip grew vertically on the titanium substrate. HRTEM and Raman results confirmed that the TiO 2 nano-pillar arrays were single crystalline anatase. The controls of morphology, size, and orientation of the nano-pillar could be achieved by varying the solution concentration and hydrothermal temperature. Furthermore, the special morphology of the TiO 2 nano-pillar arrays was caused by the selectively absorption of the tetramethylammonium (TMA) through hydrogen bonds on the lattice planes parallel to (0 0 1) of anatase TiO 2. Less grain boundaries and direct electrical pathway for electron transferring were crucial for the superior photoelectrochemical properties of the single anatase TiO 2 nano-pillar arrays. This approach provides a facile in situ method to synthesize TiO 2 nano-pillar arrays with a special morphology on titanium substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.