Abstract

Helium nanodroplets doped with polar molecules are studied by electrostatic deflection. This broadly applicable method allows even polyatomic molecules to attain subkelvin temperatures and nearly full orientation in the field. The resulting intense force from the field gradient strongly deflects even droplets with tens of thousands of atoms, the most massive neutral systems studied by beam "deflectometry." We use the deflections to extract droplet size distributions. Moreover, since each host droplet deflects according to its mass, spatial filtering of the deflected beam translates into size filtering of neutral fragile nanodroplets. As an example, we measure the dopant ionization probability as a function of droplet radius and determine the mean free path for charge hopping through the helium matrix. The technique will enable separation of doped and neat nanodroplets and size-dependent spectroscopic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call