Abstract

A series of non-covalently functionalized molybdenum disulfide-silica (f-MoS2-SiO2) nanocomposites was prepared by an in-situ assembled method and used to fabricate the oriented molybdenum disulfide-SiO2/Hydrogenated Nitrile Butadiene Rubber (f-MoS2-SiO2/HNBR) composites. The characterization results show the synergistic dispersion between the functionalized molybdenum disulfide (f-MoS2) nanosheets and SiO2 nanoparticles. The addition of f-MoS2 nanosheets can improve the dispersion of fillers in the rubber matrix and weaken the filler network. The non-covalently functionalization improves the interface interaction between f-MoS2 nanosheets and the rubber matrix. Furthermore, the tensile strength of f-MoS2-SiO2/HNBR is 65.9% higher than that of SiO2/HNBR by adding 1.0wt% of f-MoS2. At the same time, the dielectric constant of f-MoS2-SiO2/HNBR is increased by 23.7% compared to SiO2/HNBR due to the micro-capacitor structure of parallel f-MoS2 nanosheets in the rubber matrix. Our work provides new ideas for the development of high-performance elastomer materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call