Abstract

Let G be a simple graph with n vertices and m edges. Let edges of G be given an arbitrary orientation, and let Q be the vertex-edge incidence matrix of such oriented graph. The oriented incidence energy of G is then the sum of singular values of Q. We show that for any n?9, there exists at least ([n/9]/2)+1 distinct pairs of graphs on n vertices having equal oriented incidence energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.