Abstract

Transmission electron microscopy and electron diffraction have been used to determine the structure, orientation and morphology of CaCO3 crystals at the early stages of growth under compressed Langmuir monolayers of stearic acid [CH3(CH2)16CO2H] and octadecylamine [CH3(CH2)17NH+3]. At [Ca]≈ 9 mmol dm–3, elongated plate-like calcite single crystals of narrow particle size distribution were nucleated under fully compressed stearate monolayers. The crystals were elongated along the c axis and oriented with a {1text-decoration:overline10} face parallel to the monolayer/solution interface. Subsequent development of the crystals resulted in rhombohedral outgrowth into the bulk solution. Calcite crystals nucleated under partially compressed monolayers showed the same crystal chemical properties but had a more uniform size population. Nucleation under octadecylamine monolayers resulted in disc-shaped vaterite single crystals of narrow particle size distribution. Two types of disc were observed: (a) circular/hexagonal crystals oriented with their c axis perpendicular to the monolayer, and (b) oval-shaped crystals oriented with their a axis perpendicular to the monolayer. Changes in monolayer surface pressure did not influence these properties. The preferred orientation of calcite can be rationalized in terms of geometric and stereochemical matching between the carboxylate headgroups and the ions in the {1text-decoration:overline10} crystal face. There is no geometric match for vaterite but a stereochemical relationship exists on stearate monolayers with respect to the (00.1) face. For octadecylamine monolayers, bidentate binding of HCO–3 may be important in determining the preferential orientation of nuclei formed at the organic surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.