Abstract
Bacterial cellulose has garnered remarkable interest from researchers, particularly those working in the biomedical field. In this work, BC microfibers were fabricated via green dissolution (ZnCl2) and regeneration (ethanol). The orientation of cellulose chains was investigated during extrusion and simple post-processing via polarized optical microscopy and small-angle X-ray scattering. The results implied that the mechanical properties of BC microfibers can be tuned by rational pre-stretching. The BC microfibers can be programmable, and be used to suture hard or soft tissues. The as-designed paralleled BC microfibers have good biocompatibility and can regulate the directional growth of cells on their surface. The as-obtained BC microfiber with a high tensile strength of up to ∼115 MPa is suitable for surgical sutures. The tunable BC microfibers may be utilized as an adequate fiber-derived biomedical material product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.