Abstract

Electrodes for flexible supercapacitors were fabricated from manganese-doped carbon nanofibers (Mn-CNF) decorated with carbon-coated Co-CoOx (C/Co-CoOx) nanotubes. The Mn-doped polyacrylonitrile (PAN)–2-methylimidazole (2MI) solution was electrospun using optimized Mn concentrations and ZIF-67 was then surface loaded by wet impregnation with added polyvinylpyrrolidone (PVP). These ZIF-67 loaded Mn-fibers, when annealed, resulted in carbon-coated C/Co-CoOx nanotubes on the Mn-CNF surface. In the presence of PVP, ZIF-67 oriented attachment occurs, forming evenly dispersed CoOx particles even after high temperature annealing. XRD spectra exhibit the formation of metallic Co nanoparticles (NPs), whereas Raman spectra and XPS indicate Co particle oxidation. A carbon coating limits the oxidation of Co; thus, the particles are called C/Co-CoOx. A symmetric supercapacitor cell prepared using the CNFs decorated with C/Co-CoOx using an aqueous electrolyte has a capacitance of 1263 mF⋅cm−2 at a current density of 0.25 mA⋅cm−2 and a wide potential window of 1.4 V for the optimal case. Long-term cycling showed 110 % capacitance retention after 10,000 cycles. Moreover, bending tests and powering LEDs demonstrated the flexibility and improved charge storage of the prepared nanofiber electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call