Abstract
Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment.
Highlights
Nanoparticles with a well-controlled microstructure, morphology and composition are essential for biomedical and magnetic recording applications [1,2]
Stoichiometric Co2FeO4 discs of hexagonal, diamond-like, triangular or irregular shapes, and small stoichiometric CoFe2O4 spheres were obtained after 28 days
The results suggest that nanoparticle growth in the bioinspired synthesis is a complex, multistep process, in which several structural and compositional changes occur
Summary
Nanoparticles with a well-controlled microstructure, morphology and composition are essential for biomedical and magnetic recording applications [1,2]. These characteristics, which determine the physical properties such as the magnetic behavior, are highly sensitive to the crystal growth process. Inorganic crystal formation and growth have been described via classical crystal growth theory for the past 100 years [3]. In this theory, crystal growth occurs via atom by atom (or monomer by monomer) addition to the crystal, with monomers as the smallest aggregates from which nuclei form. Throughout the last decades, several studies of nanoparticle growth and biomineralization processes showed a different underlying growth mechanism which cannot be explained by the classical growth theory [3,4,5,6,7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.