Abstract

Mass spectrometry (MS)-based glycoproteomics research requires additional sample pretreatment to improve the effective identification of low-abundance glycopeptides without interference from non-glycoproteins. Herein, an attractive strategy using resorcinol-formaldehyde (RF) resin and zirconium-based coordination polymer (Zr-BCP) was established to prepare one-dimensional porous coordination polymer composites for glycopeptide enrichment before MS analysis. The obtained Fe3O4@RF@Zr-BCP nanochains feature excellent magnetic response (42.26 emu/g), high hydrophilicity (16.0°), and large specific surface area (140.84 m2/g), which provides abundant affinity sites for specific capture of glycopeptides. The materials exhibit outstanding performance in the enrichment of glycopeptides in terms of sensitivity (15 fmol/μL IgG), selectivity (1:200, molar ratio of IgG/BSA), loading capacity (200 mg/g) and recovery (106.4 ± 3.5%). In addition, the developed method based on Fe3O4@RF@Zr-BCP has been successfully applied to capture glycopeptides in tryptic digest of mouse teratoma cell extracts. It is worth emphasizing that compared with dispersed nanoparticles, the one-dimensional chain structure brings extraordinary reusability to Fe3O4@RF@Zr-BCP nanochains, which is conducive to the rapid cyclic enrichment of glycopeptides. This present work provides a potential enrichment platform for comprehensive glycoprotein analysis, and opens a new avenue for the application of oriented-assembly nanochains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call