Abstract

The self-assembly of thin films of organometallic cylinder-forming amorphous polystyrene-block-polyferrocenylsilane diblock copolymers is described. By varying film thickness and/or the conditions of toluene during evaporation annealing, well-ordered arrays of hexagonally packed iron-rich cylindrical microdomains oriented either parallel to or normal to the substrate were produced. In the latter case, when the film thickness was very small (12−15 nm), well-defined nanoporous cylindrical domains were found. This unique morphology persists in UV ozone etched films where inorganic, ring-like cylindrical domains were produced. By varying the rate of solvent evaporation from solvent-swollen films, control over the orientation, order, and size of the cylindrical microdomains was achieved and variation of the fundamental morphology was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call