Abstract
The mean-field theory of the quadrupolar glass (QG) is presented using a microscopic approach. It is shown that the reaction-polarization effects caused by short-range spatial correlations are well distinguished from those of random-bond spin glasses. They control the QG concentration threshold and result in an incomplete orientational order. The QG ground state (zero quadrupolization, unsaturated Edwards-Anderson-type orientational order parameter) is predicted. Thermodynamic characteristics, namely entropy, pressure and free energy as well as the related heat capacity and Gruneisen parameter are estimated. The ground-state findings (incomplete order, residual entropy) are similar to those of short-range Potts glasses. A correspondence between density matrix and mean field treatment to the QG problem is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.