Abstract

From polarization studies of high resolution IR spectra of SF6 and SeF6 trapped in noble gas solids we show that much of the structure observed for the stretching mode represents site symmetry split components for low symmetry trapping sites, the triply-degenerate ν3 mode being split into a doubly- and singly-degenerate mode. Most of the sites showing polarization are orientationally ordered with the singly-degenerate component perpendicular to the substrate. We attribute the driving force for ordering to guest–host interaction potentials which result in registry between the molecules and the (111) growth plane during deposition. The observed orientational ordering combined with high temperature annealing studies has allowed the identification of the symmetry of certain trapping sites and further analysis of vibrational dephasing dynamics. Several sites with the same nominal symmetry and structure can be tracked through the matrices discussed herein. The implications of the ordering of impurity structure in a host lattice formed by vapor deposition are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.