Abstract

Shear can impart a high degree of orientational order to supported block copolymer thin films containing one or more layers of cylindrical microdomains, leading to a striped pattern with a period of tens of nanometers extending over macroscopic (centimeter-squared) areas. Though the as-deposited films have a polygrain structure, after shearing at sufficiently high stresses the only defects which remain are isolated dislocations, and the orientational order can be quite high (nematic or twofold orientational order parameter >0.99, as measured by tapping-mode atomic force microscopy). The effect of isolated dislocations on orientational order is adequately captured by an isotropic elastic continuum model of the structure surrounding the dislocation, producing a linear decrease of order parameter with dislocation density. Even at zero dislocation density, however, the order parameter does not quite reach unity, due to small-amplitude undulations of the cylinders about their axes which persist in the transverse direction over several cylinder periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.