Abstract

Nematic elastomers exhibit large, spontaneous shape changes at the transition from the high-temperature isotropic phase to the low-temperature nematic phase. These finite deformations are studied here in the context of a nonlinear, properly invariant, variational theory that couples the orientational order and elastic deformation. The theory is based on the minimization of a free-energy functional that consists of two contributions: a nematic one due to the interaction of the mesogenic units and an elastic one arising from the stretching of the cross-linked polymer chains. Suitable choices for these two contributions allow for large, reversible, spontaneous shape changes in which the elastic deformation can affect the isotropic-nematic transition temperature. The change in transition temperature as well as the magnitude of the resulting spontaneous deformation is illustrated for various parameter values. The theory includes soft elasticity as a special case but is not restricted to it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.