Abstract

The first time-resolved experiments in which interfacial molecules are pumped to excited electronic states and probed by vibrational sum frequency generation (SFG) are reported. This method was used to measure the out-of-plane rotation dynamics, i.e. time dependent changes in the polar angle, of a vibrational chromophore of an interfacial molecule. The chromophore is the carbonyl group, the rotation observed is that of the -C=O bond axis, with respect to the interfacial normal, and the interfacial molecule is coumarin 314 (C314) at the air/water interface. The orientational relaxation time was found to be 220+/-20 ps, which is much faster than the orientational relaxation time of the permanent dipole moment axis of C314 at the same interface, as obtained from pump-second harmonic probe experiments. Possible effects on the rotation of the -C=O bond axis due to the carbonyl group hydrogen bonding with interfacial water are discussed. From the measured equilibrium orientation of the permanent dipole moment axis and the carbonyl axis, and knowledge of their relative orientation in the molecule, the absolute orientation of C314 at the air/water interface is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.