Abstract

Two series of novel dicationic threading molecules [Quin(CH2)10R]2+ and [3,5-Lut(CH2)10R]2+, where Quin+ = quinuclidinium, 3,5-Lut+ = 3,5-lutidinium, and R+ = N(CH3)3+ and N(CH3)2CH2CH3+, form [2]semi-rotaxanes with [small alpha]-cyclodextrin (alpha-CD) in aqueous solution. The quinuclidinium and 3,5-lutidinium are sufficiently bulky to prevent threading while the R+ groups allow for slow threading by alpha-CD at 25 degrees C. The resulting [2]semi-rotaxanes exist in two orientational isomers owing to the asymmetry of both the alpha-CD cavity and the threading molecules. Two-dimensional 1H NMR spectroscopy and kinetics experiments reveal that the isomer in which the narrower rim (primary OHs) is positioned near the R+ group is the kinetically preferred isomer, while the other isomer is the thermodynamically preferred product. The kinetics and mechanism of the formation, dissociation, and interconversion of the two isomers have been determined at 25 degrees C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.