Abstract
We study the phase behavior of diblock copolymer melts with one block possessing orientation-dependent segmental interactions using self-consistent field theory. A generalized coarse-grained description is introduced based on the local (polar) orientational order parameter and K, an effective Frank elastic constant for orientational gradients. To explore the role played by orientational interactions in assembly thermodynamics, we apply the theory to two-dimensional melt morphologies for a range of K. As microphase segregation necessarily introduces splay deformations of the segment orientation, we find that increasing the stiffness K raises the critical χN at the onset of microphase separation. Furthermore, we find that strong orientational interactions in one block give rise to highly asymmetric phase diagrams due to the large penalty for high-splay morphologies, such as the cylindrical phase. Finally, we analyze the costs of inter-segmental splay as well as the size dependence of domain spacing on K based on a strong-segregation picture of morphologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.