Abstract
The rheological response of oriented axisymmetric grains has additional degrees of complexity associated with their microstructure orientation. These additional kinematic degrees of freedom that give rise to complex transient macroscale rheological responses are not well understood. In this Letter, we study the rheology of axisymmetric grains subjected to transient flow. We identify strong coupling between the microstructure rearrangement and strain hardening which, under certain conditions, can yield jamming. We identify the critical conditions corresponding to jamming and the dependency on the shape of the grains. It is shown that this is a particular form of jamming that is directional in nature, since unjamming occurs if the shear direction is reversed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.