Abstract

We present a detailed theoretical analysis of polarized absorption spectra and linear dichroism of cyanine dye aggregates whose unit cells contain two molecules. The studied threadlike ordered system with a molecular exciton delocalized along its axis can be treated as two chains of conventional molecular aggregates, rotated relative to each other at a certain angle around the aggregate axis. Our approach is based on the general formulas for the effective cross section of light absorption by a molecular aggregate and key points of the molecular exciton theory. We have developed a self-consistent theory for describing the orientational effects in the absorption and dichroic spectra of such supramolecular structures with nonplanar unit cell. It is shown that the spectral behavior of such systems exhibits considerable distinctions from that of conventional cyanine dye aggregates. They consist in the strong dependence of the relative intensities of the J- and H-type spectral bands of the aggregate with a nonplanar unit cell on the angles determining the mutual orientations of the transition dipole moments of constituting molecules and the aggregate axis as well as on the polarization direction of incident light. The derived formulas are reduced to the well-known analytical expressions in the particular case of aggregates with one molecule in the unit cell. The calculations performed within the framework of our excitonic theory combined with available vibronic theory allow us to quite reasonably explain the experimental data for the pseudoisocyanine bromide dye aggregate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call