Abstract

The orientational effect of p-YC6H4 (Ar) on delta(Se) is elucidated for ArSeR, based on experimental and theoretical investigations. The effect is examined in the cases in which Se--CR in ArSeR is either in the Ar plane (pl) or is perpendicular to the plane (pd). 9-(Arylselanyl)anthracenes (1) and 1-(arylselanyl)anthraquionones (2) are employed to establish the effect in pl and pd, respectively. Large upfield shifts are observed for Y=NMe2, OMe, and Me, and large downfield shifts for Y=COOEt, CN, and NO2 in 1, relative to Y=H, as is expected. Large upfield shifts are brought by Y=NMe2, OMe, Me, F, Cl, and Br, and downfield shifts by Y=CN and NO2 in 2, relative to Y=H, with a negligible shift by Y=COOEt. Absolute magnetic shielding tensors of Se (sigma(Se)) are calculated for ArSeR (R=H, Me, and Ph), assuming pl and pd, based on the DFT-GIAO method. Observed characters are well explained by the total sigma(Se). Paramagnetic terms (sigmap(Se)) are governed by (sigmap(Se)xx+sigmap(Se)yy), in which the direction of np(Se) (constructed by 4pz(Se)) is set to the z axis. The main interaction in pl is the np(Se)-pi(C6H4)-pz(Y) type. The Y dependence in pl occurs through admixtures of 4pz(Se) in pi(SeC6H4Y) and pi*(SeC6H4Y), modified by the conjugation, with 4px(Se) and 4py(Se) in sigma(CSeX) and sigma*(CSeX) (X=H or C) under a magnetic field. The main interaction in pd is the sigma(CSeX)-pi(C6H4)-px(Y) type, in which Se-X is nearly on the x axis. The Y dependence in pd mainly arises from admixtures of 4pz(Se) in np(Se) with 4px(Se) and 4py(Se) in modified sigma*(CSeX), since np(Se) is filled with electrons. It is demonstrated that the effect of Y on sigmap(Se) in the pl conformation is the same regardless of whether Y is an electron-donor or electron-acceptor, whereas for pd conformations the effect is greater when Y is an electron donor, as observed in 1 and 2, respectively. Contributions of each molecular orbital and each transition on sigmap(Se) are evaluated, which enables us to recognize and visualize the effect clearly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.