Abstract
We investigate through simulations the phenomena of magnetoreception to enable an understanding of the minimum requirements of a fail-safe mechanism, operational at the cellular level, to sense a weak magnetic field at ambient temperature in a biologically active environment. To do this, we use magnetotactic bacteria (MTB) as our model system. The magnetic field sensing ability of these bacteria is due to the presence of magnetosomes, which are internal membrane-bound organelles that contain an iron-based magnetic mineral crystal. These magnetosomes are usually found arranged in a chain aligned with the long axis of the bacterial body. This arrangement yields an overall magnetic dipole moment to the bacterial cell. To simulate this orientation process, we set up a rotational Langevin stochastic differential equation and solve it repeatedly over appropriate time steps for isolated spherical shaped MTB as well as for a more realistic model of spheroidal MTB with flagella. The orientation process appears to depend on shape parameters with spheroidal MTB showing a slower response time compared to spherical MTB. Further, our simulation also reveals that the alignment to the external magnetic field is more robust for an MTB when compared to single magnetosome. For the simulation involving magnetosomes, we include an extra torque that arises from the twisting of an attachment tether and enhance the viscosity of the surrounding medium to mimic intracellular conditions in the governing Langevin equation. The response time of alignment is found to be substantially reduced when one includes a dipole interaction term with a neighboring magnetosome and the alignment becomes less robust with increase in inter dipole distance. The alignment process can thereby be said to be very sensitively dependent on the distance between magnetosomes. Simulating the process of alignment between two neighboring magnetosomes, both in the absence and presence of an ambient magnetic field, we conclude that alignment between these dipoles at the distances typical in an MTB is highly probable and it would be the locked unit that responds to changes in the external magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.