Abstract
We combine experiments and theory to investigate the orientational dynamics of dipolar ellipsoids, which self-assemble into elongated ribbon-like structures due to the presence of a permanent magnetic moment, perpendicular to the long axis in each particle. Monodisperse hematite ellipsoids are synthesized via the sol-gel technique and arrange into ribbons in the presence of static or time-dependent magnetic fields. We find that under an oscillating field, the ribbons reorient perpendicular to the field direction, in contrast with the behaviour observed under a static field. This observation is explained theoretically by treating a chain of interacting ellipsoids as a single particle with orientational and demagnetizing field energy. The model allows us to describe the orientational behaviour of the chain and captures well its dynamics at different strengths of the actuating field. The understanding of the complex dynamics and assembly of anisotropic magnetic colloids is a necessary step for controlling the structure formation, which has direct applications in different fluid-based microscale technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.