Abstract
The structure and dynamics of organic dye molecules included in β-cyclodextrin are studied using spectroscopic measurements and theoretical models. The effect of the charge and the size of the guest molecule on the properties of the host−guest complex is probed by comparing complexes formed with three different chromophores: resorufin (anion), oxazine-118 (cation), and oxazine-725 (cation) in aqueous solutions of cyclodextrin. The binding is characterized using absorption and calorimetry titrations. The structure of the complexes is analyzed by molecular modeling using empirical force field and semiempirical quantum theory calculations. Time-resolved polarization spectroscopy is used to investigate the rotational dynamics of different chromophores bound to β-cyclodextrin. Internal motion of the guest and overall rotational tumbling of the complex are observed for resorufin and oxazine-118. Modeling the internal motion of the chromophore as diffusion in a cone provides the mean square diffusion angle inside the cavity. It is found that the relative host−guest size determines the character of intermolecular host−guest dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.