Abstract

Orientation sensitive properties of extrastriate area 21a neurons were investigated. Special attention was paid to the qualitative characteristics of neuron responses to the different orientations of visual stimulus motion across neuron classical receptive fields (CRF). The results of experiments have shown that a group of neurons (31%) in area 21a with specialized responses to moving visual stimuli changed their direction selective (DS) characteristics depending on the orientation of the stimulus movement. Some neurons reveal an abrupt drop of the direction sensitivity index (DI) to certain orientation (58%), and some show significant increase of DI at one of applied orientations of stimulus motion (22%). Detailed investigation of response patterns of non-directional neurons to different orientations of stimulus motion have revealed clear-cut qualitative differences, such as different regularities in the distribution of inter-peak inhibitory intervals in the response pattern in dependence of the orientation of stimulus motion. The investigation of neuron CRF stationary functional organization did not reveal correlations between RF's spatial functional organization, and that of qualitative modulations of neuron response patterns. A suggestion was put forward, that visual information central processing of orientation discrimination is a complex integrative process that includes quantitative as well as qualitative transformations of neuron activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.