Abstract

TAM (topographic attentive mapping) network is a biologically-motivated neural network with Gabor function type receptive fields. However, the structure of receptive fields is a mono-layer, and there is a lack of performance for rotating images. In this paper, we formulate a new TAM network with multilayer structure of extensive receptive fields. We also show the usefulness of TAM network using some examples of character recognition

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.