Abstract

The Rayleigh resolution criterion sets the minimum separation for two-point objects to be distinguishable in a classical optical imaging system. We demonstrate that the sub-Rayleigh resolution can be achieved in a telecentric imaging system with the help of a partially coherent illumination whose spatial coherence has lattice-like distribution. We show that the orientation-selective sub-Rayleigh imaging can be realized by controlling the spatial distribution of the coherence lattice into different symmetries. We carry out a proof-of-principle experiment to demonstrate the orientation-selective sub-Rayleigh imaging for a 1951 USAF resolution target. Our results indicate a flexible orientation-selective high-resolution imaging with spatial coherence engineering of the partially coherent light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.