Abstract
We report the vectorial incorporation of a highly asymmetric F0F1 ATP synthase complex from Micrococcus luteus into polymer-supported membranes. Dynamic light scattering and cryo electron microscopy confirm that the use of weak surfactants (bile acid) allows for the non-disruptive protein incorporation into lipid vesicles. Spreading of vesicles with ATP synthase onto a cellulose support results in a homogeneous distribution of proteins, in contrast to a patchy image observed on bare glass slides. The orientation of ATP synthase can be identified using an antibody to the ATP binding site as well as from topographic profiles of the surface. The method to "align" transmembrane proteins in supported membranes would open a possibility to quantify protein functions in biomimetic model systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.