Abstract

Although the Al2Fe phase has similar decagonal-like atomic arrangements as that of the orthorhombic Al5Fe2 phase, no evidence for intergrowth samples of Al2Fe and Al5Fe2 has been reported. In the present work, the co-existence of Al2Fe and Al5Fe2 phases has been discovered from the educts obtained with a nominal atomic ratio of Al:Fe of 2:1 by arc melting. First, single-crystal X-ray diffraction (SXRD) as well as scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) measurements have been utilized to determine the exact crystal structures of both phases, which are refined to be Al12.48Fe6.52 and Al5.72Fe2, respectively. Second, the orientation relationship between Al2Fe and Al5Fe2 has been directly deduced from the SXRD data sets, and the co-existence structure model has been constructed. Finally, four pairs of parallel atomic planes and their unique orientation relations have been determined from the reconstructed reciprocal-space precession images of (0kl), (h0l), and (hk0) layers. In addition, one kind of interface atomic structure model is constructed by the orientation relations between two phases, correspondingly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call