Abstract
We propose a new computation model for simulating elastic thin shells at interactive rates. Existing graphical simulation methods are mostly based on dihedral angle energy functions, which need to compute the first order and second order partial derivatives with respect to current vertex positions as bending forces and stiffness matrices. The symbolic derivatives are complicated in nonisometric element deformations. To simplify computing the derivatives, instead of directly constructing the dihedral angle energy, we use the orientation change energy of mesh edges. A continuum-mechanics-based orientation-preserving rod element model is developed to provide the bending forces. The advantage of our method is simple bending force and stiffness matrix computation, since in the rod model, we apply a novel incremental construction of the deformation gradient tensor to linearize both tensile and orientation deformations. Consequently, our model is efficient, easy to implement, and supports both quadrilateral and triangle meshes. It also treats shells and plates uniformly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.