Abstract

We propose in this paper a definition of a “polyconvex function on a surface”, inspired by the definitions set forth in other contexts by J. Ball (1977) [3] and by J. Ball, J.C. Currie, and P.J. Olver (1981) [5]. When the surface is thought of as the middle surface of a nonlinearly elastic shell and the function as its stored energy function, we show that it is possible to assume in addition that this function is coercive for appropriate Sobolev norms and that it satisfies specific growth conditions that prevent the vectors of the covariant bases along the deformed middle surface to become linearly dependent, a condition that is the “surface analogue” of the orientation-preserving condition of J. Ball. We then show that a functional with such a polyconvex integrand is weakly lower semi-continuous, a property which eventually allows to establish the existence of minimizers. We also indicate how this new approach compares with the classical nonlinear shell theories, such as those of W.T. Koiter and P.M. Naghdi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.