Abstract

Abstract The mechanical and physical properties of wood fibres depend to a large extent on the orientation of the polymers, mainly the cellulose microfibrils, within the supramolecular structure of the cell wall. Under moist conditions, the arrangement within the polymer matrix may play a dominant role for mechanical properties in general and, especially, in the transverse direction. In this context, it is of special interest to determine the orientation of glucomannan and xylan, being the essential components of softwood hemicelluloses, and of lignin in wood fibres. Fourier transform infrared (FTIR) microscopy was used to examine the orientation of the main wood polymers in transversal and longitudinal direction of spruce fibres. We investigated fibres made from a thermomechanical pulp, in which the outer fibre wall layers were removed by mechanical action, and chemically delignified fibres. The polarised FTIR measurements indicated that glucomannan and xylan appear to have a parallel orientation with regard to the orientation of cellulose and, in all probability, an almost parallel orientation with regard to the fibre axis. Lignin was found to be less oriented in the fibre wall, although its arrangement is not fully isotropic. In the longitudinal direction of the fibres, there were no significant changes in the molecular orientation of the studied polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.