Abstract

The extracellular region of the macrophage mannose receptor, a protein involved in the innate immune response, contains eight C-type carbohydrate-recognition domains (CRDs). The fourth of these domains, CRD-4, is central to ligand binding by the receptor, and binds mannose, fucose and N-acetylglucosamine by direct ligation to Ca2+. Site-directed mutagenesis combined with NMR and molecular modelling have been used to determine the orientation of monosaccharides bound to CRD-4. Two resonances in the 1H NMR spectrum of CRD-4 that are perturbed on sugar binding are identified as a methyl proton from a leucine side chain in the core of the domain and the H-2 proton of a histidine close to the predicted sugar-binding site. The effects of mutagenesis of this histidine residue, a nearby isoleucine residue and a tyrosine residue previously shown to stack against sugars bound to CRD-4 show the absolute orientation of sugars in the binding site. N-Acetylglucosamine binds to CRD-4 of the mannose receptor in the orientation seen in crystal structures of the CRD of rat liver mannose-binding protein. Mannose binds to CRD-4 in the orientation seen in the CRD of rat serum mannose-binding protein and is rotated by 180 degrees relative to GlcNAc bound to CRD-4. Interaction of the O-methyl group and C-1 of alpha-methyl Fuc with the tyrosine residue accounts for the strong preference of CRD-4 for this anomer of fucose. Both anomers of fucose bind to CRD-4 in the orientation seen in rat liver mannose-binding protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call