Abstract

AbstractThe dynamics of non-spherical rigid particles immersed in an axisymmetric random flow is studied analytically. The motion of the particles is described by Jeffery’s equation; the random flow is Gaussian and has short correlation time. The stationary probability density function of orientations is calculated exactly. Four regimes are identified depending on the statistical anisotropy of the flow and on the geometrical shape of the particle. If $\boldsymbol{\lambda} $ is the axis of symmetry of the flow, the four regimes are: rotation about $\boldsymbol{\lambda} $, tumbling motion between $\boldsymbol{\lambda} $ and $- \boldsymbol{\lambda} $, combination of rotation and tumbling, and preferential alignment with a direction oblique to $\boldsymbol{\lambda} $.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.