Abstract

The polarization of photoluminescence emitted from anisotropic nanocrystals directly reflects the symmetry of the eigenstates involved in the recombination process and can thus be considered as a characteristic feature of a nanocrystal. We performed polarization resolved magneto-photoluminescence spectroscopy on single colloidal Mn2+:CdSe/CdS core-shell quantum dots of wurtzite crystal symmetry. At zero magnetic field, a distinct linear polarization pattern is observed, while applying a magnetic field enforces circularly polarized emission with a characteristic saturation value below 100%. These polarization features are shown to act as a specific fingerprint of each individual nanocrystal. A model considering the orientation of the crystal c⃗ axis with respect to the optical axis and the magnetic field and taking into account the impact of magnetic doping is introduced and quantitatively explains our findings. We demonstrate that a careful analysis of the polarization state of single nanocrystal emission using the full set of Stokes parameters allows for identification of the complete three-dimensional orientation of the crystal anisotropy axis of an individual nanoobject in lab coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call