Abstract

We investigate the orientation of the CO (X1∑+) molecules in the combined electrostatic and laser fields. We analyze the adiabatic and nonadiabatic interactions of the molecules with the applied laser field. It shows that the pendular energy levels induced by the laser field form the tunneling doublets which can be coupled by the applied electrostatic field. The CO molecules in the X1∑+ state with small permanent dipoles can be greatly orientated due to the coupling interaction. If the laser field is added adiabatically, the excellent orientation is achieved even at a weak electrostatic field. While in a nonadiabatic case, the molecular orientation reoccurs periodically when the laser field is turned off. Additionally, we study the dependence of the degree of the molecular orientation on the applied laser and electrostatic intensities and the molecular temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.